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I Abstract 
It recently came to light that more than half of the crime committed in South Africa is not 

reported to the police.  Research has put forward that among the many complex reasons that 

people have for choosing not to report a crime to the police, one is that people much prefer 

to feel hidden (and so, in their perception, safe) when reporting a crime.  This perception of 

safety is important, and if that assurance could be granted to community members, the 

police might see a greater number of people begin to report crime.  News that the national 

police service’s website was hacked and the personal details of whistleblowers exposed to 

the public very likely left the nation fearful and with a negative attitude towards reporting 

crime. 

 

Access control has been a central topic of research for decades as various approaches to 

managing authorisations on data are suggested and debated.  It is a process employed by an 

organisation to regulate its staff’s access to its data.  As much as it can be a powerful tool for 

managing access restrictions, direct attacks on database servers tend to bypass the access 

control model in place, finding and exposing a completely readable database. 

 

As such, this project sought to create and evaluate a cryptographic access control scheme 

suited to the peculiar requirements of a police organisation’s access control model.  While 

the solution developed met these requirements, upon evaluation, it was found to perform 

poorly under the overhead of cryptography. 

 

The report is unfortunately incomplete, and I send my sincerest apologies herewith.   
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1 Introduction 
1.1. Motivation for the Cry-Help project 
Earlier this year, the South African Institute for Race Relations released a report that 

highlighted how it is estimated that in 2011, more than half the crimes committed in the 

country were not reported to the police. 

 

For many years, researchers have studied the behaviour of crime reporters in order to 

suggest a framework that they apply to decide whether or not to report a crime to the police.  

Admittedly, this decision tends to be influenced by people’s perception of how responsive 

and helpful the police are, but Lasley’s (1995) study suggests another factor in the crime 

reporter’s decision.  An experiment was conducted to measure how the medium of crime 

reporting affects the reporter’s choice, comparing the widely-used telephonic approach with 

a computer-based approach.  The results suggested that the extent to which a person feels 

anonymous reporting a crime affects their decision to do so positively – the more the crime 

reporting medium conceals their action, the more likely they are to report a crime. 

 

Clearly, this is in stark contrast to the most popular methods of crime reporting today – 

phoning the police, visiting the police station or stopping at a Groote Schuur Community 

Improvement District (GSCID) box, for instance. 

 

If we consider the most popular method of communication in South Africa, we find that the 

mobile phone has not only penetrated the country rapidly and widely, but its features have 

also advanced greatly over the years, from touch screens to gesture recognition, and from 

cameras to audio recording facilities to name but a few.  The popularity and capabilities of 

this technology made it a good candidate for solving the problem of people opting not to 

report a crime simply because they do not feel safe doing so. 

 

Cry-Help arose as an endeavour to see how best the possibilities that mobile phones offer 

today could be used in building a better crime-reporting system – one where people can 

report crime without having to fear being seen doing so.  However, any crime-reporting 

system further needs to provide assurance of security to reporters, that is, the safety of the 

information that they will send to the police. 

 

As such, this project had two objectives.  The first was to build a prototype of a mobile crime 

reporting system with the following components: 

 a mobile application with a user interface that supports discreet crime reporting; 

 a way of transferring the crime reports to the police securely; 

 a way of keeping the reports safely, protecting them not only from external 

intruders, but also from unauthorised viewers. 
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The second was to design the system to perform efficiently, while guaranteeing an 

acceptable level of security for the reporters and the crime reports.  This objective was to be 

met by the last two components of the project.  The measures “good performance” and 

“acceptable security” are defined and described in the respective reports. 

 

1.2. Project description 
This report documents the development of the third component of Cry-Help – that is, 

protecting the crime data from people who aren’t authorised to view it, primarily within the 

police organisation but also in a way that prevents trespassers against the organisation’s 

access restrictions from reading it. 

 

Initially, my solution to this problem involved studying a database encryption scheme called 

CryptDB which allows queries to be performed on encrypted data, thus keeping the data 

unreadable on the database server at all times and protecting it from intruders.  My 

intention was to see how I could improve the scheme.  However, after facing difficulty 

installing the source code for the scheme and realising that there wouldn’t be enough time to 

translate it from C++ to Java and implement an improved version, other options for the 

project’s direction had to be considered. 

 

Keeping Cry-Help’s objectives in mind, a decision was taken to design an access control 

scheme instead to solve the problem at hand.  This decision was further supported by how 

several database encryption schemes that I had considered did not incorporate the access 

control model of the organisation whose data they aimed to protect.  As such, upon 

querying the database in the context of Cry-Help, a police official would likely retrieve data 

that the organisation does not permit them to see, which would not be ideal. 

 

1.2.1. Research question 
The question this component of the project sought to answer is: 

Can an access control scheme that allows both hierarchical and team access to 

data be designed with cryptography employed to further protect the data from 

outsiders, and how well does this scheme perform compared to a standard non-

cryptographic solution? 
 

1.2.2. System overview 
The solution I arrived at was an access control scheme dubbed CrAC, short for 

“Cryptographic Access Control”. 

 

In addition to this scheme, a simple test bed system was designed as a simulation of a police 

database system.  CrAC and an equivalent solution developed using SQL’s standard 

constructs for privilege administration (GRANT and REVOKE statements) were then 

embedded therein, and it was used to evaluate the scheme’s performance as different 

parameters were changed. 
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1.3. Report structure 
In the next chapter, some background more specific to my part of the project is provided.  In 

the following chapter, the solution’s design is described and justified, and the test bed 

system’s design is looked at briefly.  In the fifth chapter, the implementation of both the 

scheme and the test bed system are reviewed, and thereafter, the experiment setups to test 

the scheme’s performance are documented.  In the next chapter, results of the experiments 

that were run are presented and discussed, leading to the final chapter, where the 

conclusion of the report is drawn and suggestions for future work on the scheme and 

systems it would be incorporated in are given. 
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2 Background 
This chapter briefly looks at encryption standards that have been employed in the 

development of CrAC, and particularly at how secure they are. 

 

2.1. Advanced Encryption Standard (AES) 
The Advanced Encryption Standard (AES) is a symmetric key encryption algorithm that was 

recently chosen by the National Institute of Science and Technology (NIST) as the standard 

for symmetric encryption.  It is a block cipher – that is, it divides data into several blocks of 

bits and enciphers a whole block at a time as opposed to transforming plaintext to ciphertext 

one bit at a time.  It can be used to efficiently encrypt various sizes of texts (unlike, for 

example, asymmetric encryption algorithms that usually perform poorly when the size of 

the plaintext grows to more than a kilobyte). 

 

2.2. RSA 
RSA is a public-key cryptosystem against which presently no attack stronger than a brute 

force attack has been found.  Like any other asymmetric encryption algorithm, it generates a 

pair of keys – the public and private keys, the first of which can be, as its name suggests, 

publicly known, while the latter can and should be kept as its owner’s secret.  If someone 

acquires a person’s public key, they cannot retrieve the corresponding private key from it 

unless they discover how to factor large numbers, which is currently a difficult problem to 

solve.  As such, RSA provides a nifty way for communicating parties to authenticate one 

another’s identities and to convey a key under which further communication can be 

concealed, and all this using what could be public knowledge (the public keys of different 

people). 

 

2.3. Password-based encryption 
Password-based encryption is a technique whereby a string of characters is transformed into 

a symmetric key that can be used to encrypt and decrypt characters.    Its security is 

generally not well-avouched as it ultimately depends on the user to create a good, 

unpredictable password, which is uncommon since users themselves naturally want to use a 

password that is not difficult to remember.  However, the large potential benefit of 

password-based encryption is that the key material lies in what is arguably the most 

inaccessible vault: the mind of the key’s owner.  Unfortunately, this is probably just as great 

a downfall.  
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3 Design 
In this chapter, the details and justifications for design decisions that were taken throughout 

the development of the solution access control scheme and of the system it was integrated 

with for performance testing are described.  First, a description of what the requirements for 

the scheme and the functionality of the testing system were and how they were gathered is 

given, followed by a statement of the scope chosen for the project.  Thereafter, the design 

considerations and choices for the scheme and the system are discussed, and the discussion 

is divided according to the main required features of the two. 

 

3.1. Requirements elicitation 
Since the project was not being developed for a particular customer, requirements gathering 

was a process followed to acquire an idea of how a police organisation might be structured, 

especially with respect to various individuals’ access to its data.  Avoiding the trouble that 

would likely rise in obtaining ethical clearance to use actual police organisational data, the 

first design decision taken was to use the Campus Protection Services (CPS) as a reference 

for developing the solution.  Because the organisation’s information system and personnel 

structure is much smaller than the national police force – which the Cry-Help project will 

hopefully be tailored towards in future work, a further design decision taken was to use CPS 

as basis from which a hypothetical police organisational structure should be extrapolated. 

 

3.1.1. Organisational structure 
CPS’ personnel mainly comprises three roles: the capturer, the investigator, and the 

investigations manager.  The database administrator was not given much mind in this 

project as the primary objective was to keep police data safe within the organisation, but 

future work should consider this role and which rights people filling it should have.  The 

three roles mentioned are arranged in a simple hierarchy, with the capturer having the least 

access to data, and the investigations manager being able to access and update most, if not 

all, of the crime-related data. 

 

Drawing from this, the organisational structure decided upon for this project was a role-

based hierarchy where the employees higher up in the structure are able to access data that 

employees with lower rank than them have permission to view.  Moreover, from 

experiential judgment, it was decided to allow teams of employees to share access to certain 

data (for example, generally when an investigation is opened, a team is assigned to work on 

it, and the simplest assumption to make about the related access permissions is that the team 

shares access to investigation-related data).  Also, the number of levels in the hierarchy was 

used as a parameter in testing the efficiency of the solution scheme’s efficiency, so CPS’ three 

roles were spread out over n levels (for example, levels nine to thirteen could all comprise 

capturers, just with some being subordinate to others).  The illustration below depicts how 

CPS’ hierarchy was transformed to arrive at the one this project suggested a solution for. 
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3.1.2. Functions of the system 
Looking at CPS’ information system, it appears that the main functions it performs are the 

basic activities one would expect: adding, updating, removing and viewing data.  

Furthermore, the data they store and work with can be divided into three sets: staff-, 

incident-, and investigation-related. 

 

Staff-related data is likely the smallest set, simply storing the personal details of staff 

members.  Incident-related data is very broad, recording details that describe various 

incidents that have been reported to CPS, such as vehicles spotted and suspects’ appearance.  

Lastly, investigation-related data store information such as investigation diaries and the 

progress of different investigations. 

 

As a result, the testing system was designed to perform “create, read, update, delete” 

(CRUD) operations on a basic version of these three sets of data, with exceptions where 

access restrictions would not allow the operation (for example, incidents and investigations 

should not be deleted; they should rather be archived).  

 

For staff-related data, a subset of personal details was chosen (including simple details, such 

as one’s name and contact details, and importantly, their job position).  For incident-related 

data, another straightforward table was designed with just enough attributes to describe an 

incident (for example, the place, date and time of the occurrence).  Finally, for investigation-

related, a table portraying a high-level overview of the organisation’s investigations was 

planned.  The entity-relationship diagram below is a model of the data that was chosen to 

simulate, on a small scale, the information that a police organisation could work with. 

 

3.1.3. Classification of data 
The three sets of data chosen required that a solution access control scheme deal with three 

levels of data privacy: private (or personal), for a group of employees, and public 

(unclassified). 

 

3.1.4. Access restrictions 
Because separation of duty was not strongly present in CPS’ structure (for instance, the 

investigations owner could create, remove, and update any investigation they please 

without it being verified by anyone else), for this project, access restrictions had to be 

modelled such that any employee should have to acquire permission to update an 

investigation that they had created, for instance.  The table below (Table 1) summarises the 

access restrictions chosen for which a suitable access control scheme was to be designed. 

 

ROLE Staff data Incidents data Investigations data 

Investigations 

manager 

Can view one’s 

own personal 

details, and a 

limited number of 

Can view all incidents; 

cannot delete, update or 

insert incidents 

Can view all 

investigations and can 

open a new one; 

Cannot delete or update 
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fields for other 

staff members.  

The attributes 

chosen to be kept 

private were: 

identity number, 

cell phone number, 

and residential 

address details 

any investigation; 

Can view members of an 

investigation team; 

Cannot edit this list in 

any way though 

Investigator (same as above) 

Can view all incidents; 

cannot delete, update or 

insert incidents 

Can view all 

investigations that one is 

a head of, those whose 

teams one is a part of, or 

those whose heads are 

subordinates to oneself; 

can update investigations 

that one is a head or 

member of; 

Cannot delete or insert an 

investigation; 

Can create a record of an 

investigation’s team 

members and manipulate 

howsoever one wishes 

(insert, delete, update or 

view) 

Capturer (same as above) 

Can insert a new 

incident, can view only 

those incidents that one 

captured oneself, those 

related to investigations 

whose teams one is in, or 

those which one’s 

subordinates captured; 

Cannot update or delete 

an incident 

Can view and update all 

the investigations of 

which one is a part; 

Cannot insert or delete an 

investigation; 

Can view members of an 

investigation team; 

Cannot edit this list in 

any way though 

Unassigned 

role 

Can only view 

one’s own details 

Cannot view any of this 

data 

Cannot view any of this 

data 
 

Table 1: The access restrictions that the solution was required to implement 

 

3.2. Statement of scope 
This project aimed to design, develop and test (for good performance) an access control 

scheme for a police organisation that employs a role-based hierarchy to describe its 

personnel structure, and further allows authorised teams of employees to share certain data, 
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all the while keeping classified data safe from both external and unauthorised internal 

viewers. 

 

Secondary to this, another aspect of the scope was to design and develop a small simulation 

of such an organisation’s information system in order for the access control scheme’s 

performance to be evaluated.  This simulation would perform the CRUD operations on a 

simple set of data representative of the information the organisation would likely work with. 

 

It is stressed that as much as database security is roughly five-fold, issues such as integrity of 

data, authentication of people manipulating the data, and non-repudiation were not 

focussed on.  Instead, the solution was designed to control access to the data and to maintain 

its confidentiality specifically in that regard.  However, in a later chapter, ways that the 

access control scheme could be extended to cater for some of these issues are suggested. 

 

3.3. CrAC: overview of design 

3.3.1. Dependent keys versus independent keys 
As the previous chapter highlighted, most hierarchical access control schemes that have 

been proposed make use of dependent keys.  However, the chapter further described how 

this approach can have disadvantages.  If we think of the dependent keys used in an access 

control scheme as a chain, breaking the chain in any way – that is, adding a level to the 

hierarchy or removing one, adding a user to a level or removing them – tends to require a 

large re-computation of keys, almost like one piece of the broken chain being replaced 

altogether.  Moreover, for the peculiar access control model that a typical police organisation 

could use (one where team-sharing and hierarchical access are both present), a dependent-

keying scheme would not allow sharing exclusive to a group of employees.  Consequently, 

the solution access control scheme was designed using independent keys. 

 

3.3.2. The challenge of protecting persistent data 
Furthermore, the scheme was being designed to safeguard persistent data.  In past studies, 

independent keying tends to be used in a context of dynamic access control.  Take, for 

example, a chat application where not only can people communicate individually, but 

groups can share messages too.  Generally, in the group scenario, a session key will be 

created and shared securely with the group members, and messages passed in the group 

will then be enciphered using the session key.  When the group chat ends though, because 

the data is non-persistent, the session key will be lost, and if the group is to start another 

chat, an altogether new session key will be created and used. 

 

In the case of persistent data, this cannot work, because when new keys are generated, that 

translates to decrypting data with the old encryption keys and re-encrypting it with the new 

keys.  This is not ideal because encryption and decryption are expensive operations that 

additionally contribute nothing to a system’s performance.  The scheme thus had to use 

independent keys in a way that would allow the data stored to be retrieved from their 

encrypted form over and over again.  It also had to do this attempting to minimise the 

number of encryption/decryption operations in the system. 
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3.3.3. Integrating the design decisions 
In summary, the solution access control scheme works as follows: upon being registered on 

the system, each user is assigned a set of four personal keys, namely, a password-based key 

(based on a secret password chosen by the user), a symmetric key, and a public and private 

key pair.  To encrypt personal data, one simply uses their symmetric key.  For classified 

data, however, a little more work is required as one user may have to share different data 

with different groups of people, and if both sets of data are to be encrypted with the same 

key, all the people with whom at least one of the sets is shared will indirectly have acquired 

access to the other sets that they aren’t necessarily authorised to view.  Resultantly, when a 

new record of classified data is created, a random eight-digit tag is generated and stored 

with it, and the fields of the record that need to be protected are encrypted under a new key 

formed by enciphering the tag using the symmetric key of the record’s owner.  

 

The principle of a person owning a record in the database fit the police organisation’s 

context well, because the hierarchical structure persists even when investigations are 

opened, for instance.  As such, it was feasible to assign a record to one person’s ownership.  

This idea received more support from CPS’ structure as well, where investigations have a 

one-to-one relationship with investigators. 

 

Using a random tag to create different keys for different records from one key required that 

a strong encryption scheme be employed – one that does not allow the encryption key to be 

discovered even with a large number of plaintext-ciphertext pairs to aid the attack (because 

if the symmetric key were to be recovered, the user’s private data would be left vulnerable 

to disallowed viewing).  Thus far, the Advanced Encryption Standard (AES) provides this 

guarantee, and so it was chosen as the method of encryption and key derivation. 

 

The need for the private and public keys will be explained in the next section, where the test-

bed system’s design is presented. 

 

3.4. Test bed system: an overview of the design 
The test-bed was designed to be a client-server system where clients could communicate 

with the server to obtain data from the database, and the server also took the role of 

intermediary, relaying requests from one client to another and the responses too. 

 

All in all, it performed the following functions: 

 Staff management: adding and removing a staff member to the system, updating staff 

members’ details, and viewing them 

 Incidents management: capturing a new incident and viewing the details of a specific 

incident or all the incidents in the database 

 Investigations management: opening a new investigation, updating the progress of an 

investigation, and viewing the details of a particular investigation 

 Hierarchy management: adding and removing a level from the organisation’s hierarchy 

of job positions 
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3.4.1. Storing the encryption keys 
Designing the system, it became apparent that the first important question to answer was 

the one of the keys’ storage: which of the keys would be kept?  Where would they be kept, 

and how? 

 

Working on the assumption that every employee has a computer in the organisation’s 

network that they are assigned to, it was decided that each user’s symmetric key and 

asymmetric key pair would be stored in a text file on their computer, the symmetric key 

encrypted under their password-based key, and the private key likewise under their 

symmetric key. 

 

In the next sub-section, as previously promised, the purpose of the asymmetric keys is 

explained, but for now it suffices to say that the public keys needed to be stored in a central 

place that all the users could access (to avoid the steep storage and synchronisation 

requirements that could come from every user keeping their own record of staff members’ 

public keys).  As a result, a list of users’ public keys was kept on the server, and that 

accessibly to all. 

 

3.4.2. Getting an encryption key 
Since independent keys were used to implement the access control scheme, consideration 

had to be given to how an employee would obtain the key needed to encrypt or decrypt 

data.  Moreover, how would the system ensure that only users authorised to view certain 

content would get the key to decipher that data?  This is where the asymmetric keys were 

used.  An easy protocol was designed to authenticate requesters and senders of encryption 

keys, and it works as follows: 

 Person A requests a key from the owner of the record that they wish to view (Person 

B).  This request is encrypted under Person B’s public key. 

 Person B uses their private key to decrypt the request, and if they permit Person A to 

view the record, they send the decryption key encrypted under Person A’s public key. 

Because of public-key cryptography’s fundamental ideas – that the private key cannot be 

determined from the public key and that the private key is a secret that only its owner 

knows, this straightforward protocol assures the communicating parties of each other’s 

identity. 

 

RSA was the public-key cryptographic standard of choice.  Diffie-Hellman seems to be more 

useful for creating and sharing temporal keys, which clearly does not fit this context. 
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3.5. Summary 
This chapter presented a collection of the important design decisions taken in planning the 

access control scheme and the testing system it would be implemented in.  It began with a 

description of the hypothetical police organisation that the solution was designed for and of 

how this organisation’s structure was arrived at.  Thereafter, the scope of the project’s work 

was given, and emphasis placed on the desired qualities of database security that the project 

aimed to achieve.  Lastly, the designs of the solution access control scheme and the test bed 

system were outlined, justified against the main features that were required of them.  The 

next chapter details how this design was translated to code.  
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4 Implementation 
This chapter is an account of how the design in Chapter 3 was implemented.  The tools and 

techniques used in doing so are described, as well as the challenges faced that hadn’t been 

anticipated in the design process.  The workarounds or solutions to these issues are 

documented.  Reasons for approaches taken or disqualified are also given. 

 

4.1. System development environment 

4.1.1. Programming languages 
The access control scheme and the test bed were implemented in Java, mainly because it is 

the programming language I’ve had the most exposure to.  C was a large contender because 

of how well-optimised a program written in it can be for the machine it runs on, and this 

would very likely improve the scheme’s performance as it relies heavily on cryptography, 

which requires much computation.  However, given the short period of time to develop a 

solution (moreover considering how the first few were spent on a dead-end path), the steep 

learning curve for the language far outweighed the potential benefits of using C.  Also, since 

the performance boost offered by C seems to not be significantly large anyway, it was 

decided that the Java implementation of the scheme could act as a relative measure of how 

well the scheme performs, as opposed to a definitive indication.  This was further supported 

by the decision to develop a parallel system that used standard SQL GRANT and REVOKE 

statements to implement access control in Java as well for comparison. 

 

On that note, SQL was the language of choice to interface the database system for a similar 

reason: not only is it the most popular language for database manipulation, but it is the one I 

am most conversant with. 

 

4.1.2. Database management system 
MySQL was picked as the database management system (DBMS) for the test bed as it is one 

of the most widely-used DBMSes worldwide.  Furthermore, because the solution was 

implemented in Java, Java Database Connectivity (JDBC) was used to access and manipulate 

the database from within the mock application. 

 

4.2. System functionality 
The test bed system was implemented as a simple application that offered the functionality 

listed in the previous chapter (staff, incidents, investigations and hierarchy-management), 

and two access control schemes were incorporated therein.  One just converted the 

organisation’s access restrictions to equivalent SQL statements, while the other – the 

proposed solution – employed a combination of SQL statements and cryptographic elements 

to administer access rights. 
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4.2.1. Scheme A: SQL statements only 
The access control scheme developed using SQL GRANT and REVOKE statements to 

administer database table privileges achieved all of the requirements outlined in Table 1. 

What follows is a discussion of how it was implemented, and this is divided among the four 

main tasks of the application, namely, staff, incident, investigation and hierarchy 

management. 

4.2.1.1. Staff management 
As required, every staff member with a role assigned to them was able to view a limited 

profile of all the employees.  This was accomplished by granting every user SELECT access 

only to the attributes of the limited profile in the Staff table.  Each staff member with a role 

was further permitted to view their full profile.  To permit this, upon creation of a user on 

the system, a view associated with their full profile was created too, to which the user was 

granted a SELECT privilege on all the Staff attributes.  By additionally granting the new 

user an UPDATE privilege on this view, the scheme ensured that each staff member could 

update only their personal details.  Staff members without a role were not given any 

SELECT privilege on the Staff table at all, but were given SELECT and UPDATE 

permissions for their personal profile.  As such, the scheme succeeded in guaranteeing that 

such a staff member could just view and update their own profile and not even a limited 

profile of anyone else. 

4.2.1.2. Incident management 
The scheme was successful in allowing only capturers to record new incidents, and 

furthermore allowing investigators and investigation managers to view incidents (since 

incidents will always be recorded by capturers, those above them – that is, the investigators 

and investigations managers – should also always be allowed to view them as per the 

hierarchical access control requirement for the scheme), while forbidding any updates and 

deletes by anyone in the hierarchy.  Again, this was achieved in a straightforward manner, 

granting users with those roles the relevant permissions on the Incidents table, and 

simply not granting the UPDATE and DELETE rights on it to anyone. 

 

Moreover, the access restrictions in Table 1 required that a capturer be able to read a record 

of the Incidents table only if they captured it, a subordinate to them captured it, or they 

are in the investigation team for that incident.  Before discovering how great a degree of 

row-level access control SQL’s views offers, this requirement presented a problem.  The 

cause for the difficulty experienced in implementing it using just GRANT statements on the 

Incidents table was two-fold: 

 a user can only grant permissions that they themselves possess; 

 granting record-level access to someone requires that a view tailored for them be 

created. 

Now, we must bear in mind that the system permits only a capturer to record a new incident 

and that according to the desired access control model, capturers will have varying viewing 

rights for the Incidents table depending on their rank or what investigation team they are 

a part of.  These viewing rights would have to be administered dynamically: as an incident 

is captured or as a capturer is added to an investigation team, permission to view the 
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relevant incident would need to be granted.  If every capturer were to grant each of the 

capturers above them the SELECT permission on their view of the Incidents table, each 

capturer would likely end up having too large a number of views associated with them, 

and these would be difficult to access and navigate from the mock application.  Illustration 3 

is a diagrammatic depiction of this problem. 

 

Using views once more though, the issue was swiftly overcome.  A view on the 

Incidents table was created for each new capturer and the incidents-related restrictions 

put forward in Table 1 for a capturer were specified in the view’s definition to limit each 

capturer’s reading rights correctly.  Views were also a very apt solution since they are not 

static structures, but are instead updated dynamically as the underlying table on which they 

are based is modified.  This proved a superior and more manageable approach to the former 

one, where the number of views associated with each user would likely have grown at a 

very fast rate. 

4.2.1.3. Investigation management 
Encountering a similar problem to the one reviewed in the previous sub-section, enabling 

dynamic administration of reading rights on different records in the Investigations 

table proved to be challenging at the outset.  Again, because investigators own the records in 

the table, they would either need to be allowed a database-wide permission to INSERT rows 

in all tables at the time that they are created on the system (in order for them to be able to 

update investigation team members’ views on the Investigations table at some point in 

the future when they are added to the team, for instance), which would, as aforementioned, 

be a risky authorisation to grant.  Once more, to deal with this issue, a new view on the 

Investigations table was created for each investigator and capturer based on the rule the 

view’s owner either have a higher job position than the head of any investigation in 

question or they be in the investigation team parallel to it. 

 

The other required access restrictions were also successfully implemented.  To manage the 

updates investigators could make to the Investigations table (that is, only being able to 

update investigations that they own), a view of the table was created for the investigator as 

they were added to the system, and this view was designed to contain only those 

investigations which that investigator would be appointed to head.  The investigator was 

then granted an UPDATE privilege on that view. 

4.2.1.4. Hierarchy management 
The main requirement here was the when a level was added to or removed from the 

hierarchy, employees’ access restrictions would be updated accordingly.  This was achieved 

by blindly revoking the privileges of the staff on and below the level being added or 

removed, changing their rank in the Staff table, and re-assigning privileges as appropriate 

to their new positions.  This approach was chosen (as opposed to first checking if each 

employee’s authorisations are actually affected by the change) because commonly, different 

levels in a hierarchy correspond to different job titles (this is just not the case here because 

CPS’ small hierarchy of three roles was spread over many levels), so an employee whose 

rank is affected by the hierarchical shift would very likely have a new set of privileges. 
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4.2.2. Scheme B: SQL statements with cryptography – the proposed solution 
The preceding section outlined and elaborated the main implementation details of the access 

control scheme that CrAC would be benchmarked against.  This section does the same for 

the solution scheme, again spreading the discussion over the different access control 

requirements outlined in Table 1, as well as how the other design considerations that came 

about as a consequence of employing cryptography in the scheme were implemented.  Most 

of the GRANT and REVOKE statements that were used to manage staff members’ access rights 

were used in this scheme too (for example, the INSERT and UPDATE permissions remained 

exactly the same).  The largest difference between the two schemes was CrAC’s departure 

from views as a way of providing record-level access permissions to encryption, so the 

administration of record-level access is what this section focuses on. 

 

4.2.2.1. Client-server architecture 
Since CrAC assigns independent keys to users of the system, one’s key cannot be used to 

derive another’s in order to acquire access to protected data.  As such, the solution scheme 

required that users be able to request encryption keys of each other, and so it had to be 

implemented in a client-server architecture, where users could communicate with each other 

through the server.  A peer-to-peer (P2P) architecture would likely have proven a more 

scalable solution as the server would then not pose the risk of bottlenecking communication.  

However, the difficulty in administrating such a setup (for example, ensuring that no 

unauthorised key exchanges occur among peers) outweighed its benefits. 

 

The client-server setup is simple: when a user logs in, a ServerThread dedicated to 

waiting on the user’s requests is forked, and it will listen for their instructions until the user 

enters the exit command.  To allow communication between clients, the server keeps two 

lists of sockets: one for the server’s output and input streams from and to each logged-in 

user (ActiveNormalConnections), and the other for its output and input streams from 

and to each logged-in user’s peer requests administrator (ActiveP2PConnections) – the 

description and necessity of which are given after the next section.  For now, it is adequate 

to say that the ActiveP2PConnections are what the server relays requests for keys 

through, while ActiveNormalConnections are the channels it uses to communicate 

responses to the requesters. 

 

A table at the end of the chapter (Table 2) lists the requests from users that the server handles 

with a brief description of how it responds to each. 

4.2.2.2. Key management 

4.2.2.2.1. User key generation 

Upon creating a user on the system, as described in the previous chapter, a set of four keys is 

generated for the user: a password-based key, a symmetric key, and an asymmetric key pair.  

The password-based key is generated using MD5 and DES, as recommended by RSA’s 

PKCS5 standard.  The symmetric key is an AES key, for the sole reason that AES is currently 

recommended as the most secure symmetric encryption algorithm.  Lastly, RSA was chosen 

as the public/private key pair generation algorithm for its similar globally-recognised merit. 
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The password-based key was created with the single purpose of wrapping the symmetric 

key, which in turn wraps the private and public key, and in this form, the user’s symmetric 

and asymmetric keys can be communicated to them safely (that is, even if they were to be 

intercepted by some attacker, the attacker would not be able to make any use of them as 

they would be in encrypted form).  Since the user can regenerate the password-based key on 

their machine by entering their password, this set of keys can be recovered safely on the 

client side and stored. 

 

At first, it seemed that the public key could just be sent to the user in its encoded form (an 

array of bytes) and the key regenerated by the user using those bytes when it was needed.  

The certificate to be stored in the keystore was generated using Bouncy Castle’s 

X509v1CertificateBuilder class, and an attempt was made to use Java’s 

X509EncodedKeySpec class on the client side to regenerate a user’s public key from its 

encoded form.  However, it became apparent that the key being returned by this process 

was not correct, as text encrypted under it would still be undecipherable under what was 

meant to be its corresponding private key. 

 

This approach was then abandoned in favour of Java’s wrapping function.  It is a method in 

the Cipher class that allows one to encrypt a key under another key, and the unwrap 

method can then be called to retrieve the key correctly from the cipher. 

4.2.2.2.2. Key storage 

Because users need to access one another’s public keys for secure communication of requests 

(this is elaborated on in the next section), users’ public keys are stored in a .keystore file 

on the server, which can be modified by way of a KeyStore object.  Since the KeyStore 

class only allows key pairs to be stored as a certificate and a password-protected private key, 

self-signed certificates are generated for each new user as they are created on the system, 

and their private key is protected by their login password.  Because authentication was not 

one of the main objectives of the project, self-signed certificates sufficed as assurance of 

users’ identities to one another. 

 

The keystore is loaded once the server application starts, and its password should ideally 

only be known by a few people in the hierarchy, if any at all (the project assumed that the 

database administrator would be the only one with knowledge of the keystore’s password).  

A reason for limiting access to the keystore was so that adding certificates for non-existent 

staff members would be prevented and so the risk of fake user accounts being used to gain 

unauthorised access to the organisation’s data diverted. 

 

Once the user’s set of keys is generated, the set is sent to them as described in the previous 

section, and because the assumption is that each user has a particular computer assigned to 

them in the workplace’s network, a text file stores this set of keys as strings of bytes.  They 

are stored in their encrypted form, and the initialisation vector used in enciphering the 

private and public keys is also stored alongside them. 

4.2.2.2.3. Generating the encryption key for records 

As briefly presented in the previous chapter, the key to encrypt a tuple in the database was 

created by encrypting a random tag assigned to that tuple under the symmetric key of the 
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record’s owner.  This was chosen because AES is secure against known plaintext and known 

ciphertext attacks, so even with the tags stored unencrypted, knowing the tag and the 

corresponding encryption key would not be sufficient to recover the symmetric key of the 

record’s owner.  Since only the tuple’s owner would need to access the tag anyway (the rest 

of the people with viewing rights for the tuple would get the decryption key from the 

owner), this scheme could be improved to erase the worry of generating so many plaintext-

ciphertext pairs for a single key by encrypting the tag under the owner’s public key so that 

officially only they can access it. 

 

This approach (encrypting a random number and using that as a key) was taken instead of 

creating an independent key for each record or subsets of records readable by one group of 

people, because on that path, the number of keys in the system would greatly multiply, and 

the keys would thus prove difficult to keep safe and share.  An instance of how this 

explosion of keys could occur is shown in Illustration 4. 

4.2.2.3. Authorisations 
Where Scheme A used views to provide record-level access to data, CrAC achieved it using 

encryption.  Encrypting different data under different keys enabled read authorisations that 

span a table to be granted at user creation time (so for instance, a capturer could be granted 

the SELECT privilege on the entire Incidents table) but still keep parts of it hidden from 

them.  The critical feature to implement was the extra layer of authorisation that would 

determine whether or not a user can access a certain subset of data in a table that they have 

viewing rights for. 

 

The authorisation subsystem was implemented based on the idea of data ownership – the 

idea that each record in the Incidents and Investigations table has an owner whose 

permission to read the tuple can be requested by anyone in the hierarchy and this request 

processed to return either a decline or the key to unlock that data.  As briefly described 

earlier, each user had a separate connection to the server to receive such requests on, and 

this connection would be enlisted in the Server’s ActiveP2PConnections.  This 

connection was opened in a different thread to the user’s main thread (where the user would 

be performing the “normal” actions – recording incidents, updating investigations, and so 

on).  The user was tasked with periodically running their P2PAdminManager (the separate 

thread that handled peer-to-peer requests) to attend to authorisation requests. 

 

Some requests required no active consent from the user themselves – the computer would 

just check whether the requester is either higher in job position than the record’s owner or in 

the investigation team related to the tuple in question.  This was the case for most of the 

requests dealt with (for example, requests for the decryption keys to decipher incidents and 

investigations).  Others required that the tuple’s owner explicitly agree to grant the 

requester what they had asked for.  This was the case, for instance, with job position updates 

and being assigned to an investigation.  Here the power of encryption was extended to 

illustrate how even more rigorous separation of duty could be implemented, diffusing the 

extent of any one person’s authority in the hierarchy.  All these instances are described 

further in sections to follow but here served the purpose of depicting how sharing of 

encryption keys was managed in the system. 
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The P2PAdminManager was implemented as a thread as it would have been confusing to 

have all the requests sent to a user channelled into the same stream as the server’s main line 

of communication with the user.  Because the requests would not be “synchronised” with 

the user’s personal communication with the server, at some points, the user would very 

likely receive a peer-to-peer request in the place where they were expecting a response to 

their own query to the server.  The approach taken in the solution is certainly flawed, the 

largest fault being that in the scenario where a user does not have any pending requests but 

unknowingly decides to check if they do, the application will hang until a request is 

received.  So for the system to work smoothly, a user is expected to only check for requests 

when they know there is one to attend to – a very unrealistic expectation. 

 

A different approach that could’ve been taken to solve the problem is to cater for the 

possibility of reading a P2P request instead of a response that one is anticipating in one’s 

personal communication with the server.  This approach initially seemed daunting because 

it looked like it would require an if-else pair for every message read in from the server.  

However, if the BufferedReader wrapping the user’s input stream from the server were 

to be subclassed and the readLine() method modified to differentiate between personal 

and P2P communications, attending to P2P requests would easily become integrated in the 

user’s interaction with the application without interfering too unexpectedly and yielding 

incorrect results as would be the case if the P2PAdminManager was left free to pop P2P 

requests on the user’s screen as they came in. 

4.2.2.4. Staff management 
As an obvious choice, the owner of a tuple in the Staff table was considered to be the 

employee whose personal details the tuple recorded.  Instead of using a SQL GRANT SELECT 

statement to limit what fields of one’s personal profile other users could see, their viewing 

was restricted by encrypting the sensitive fields under the owner’s symmetric key.  So if a 

user attempted to view someone else’s personal details, the system would attempt to 

decrypt the person’s profile under the user’s symmetric key and, because it would fail to do 

so, return one of null or garble, as the screenshot of the application shows in Figure 1.  

Unfortunately, this method could not differentiate between an employee with a role and one 

to whom a role hadn’t been assigned yet, so these could view other employees’ limited 

profiles alike – a violation of an access restriction stipulated in Table 1.  This was addressed 

by not granting “roleless” employees read rights on the Staff table, but only on a view of 

the Staff table that contains just their record of personal details. 

4.2.2.5. Incident management 
The main access control requirement with respect to incidents was that any given incident 

only be viewable to employees higher in position than the incident’s capturer or to 

employees who are a part of the related investigation team.  Again, encryption was used to 

supply legal views of the incidents to each employee.  The administration behind the 

management of investigation teams in the database is described in the next section, but the 

primary idea of it is that every investigation has an attribute to store a comma-separated list 

of its team members, and in addition to checking the requester’s position in the hierarchy, 

the investigation’s team field was referred to in order for the system to decide whether or 

not a requesting party should be granted the key to decipher the incident’s data. 
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Permission to view a record was granted by way of the decryption key being sent to the 

requester, enciphered using the requester’s public key to ensure that only they can retrieve 

it. 

4.2.2.6. Investigation management 
Similar to incident management, investigation management was required to filter SELECT 

rights to only those employees whose rank exceeds the position of the investigation’s owner 

or who form a part of the investigation’s team.  As outlined briefly above, access granted on 

the basis of the requester being in the investigation’s team was administered with the help of 

the team attribute in the Investigations table.   

4.2.2.7. Investigation team management 
Managing the investigation teams (adding and removing members to and from a team) was 

an important step in achieving the required access control to investigations and incidents. 

 

At first, the idea was to create a table for each investigation’s team upon the investigation 

being opened (entered in the database).  This would store a list of the team members’ staff 

numbers.  However, because the incidents’ identity numbers – and so the investigation 

numbers’ too – were originally being generated randomly (with no intent really), these 

tables could not be created as the corresponding investigation was opened because that 

would require the person opening the investigation, i.e. an investigations manager, to have 

the CREATE privilege for the database.  Furthermore, because the investigator in charge of 

the investigation would ultimately be the one with the responsibility of modifying the 

investigation team’s table, the investigations manager creating this table would need to have 

this CREATE privilege with the GRANT OPTION.  That way, they would able to grant the 

privileges necessary for modifying the investigation team tables to the appropriate 

investigators.  This would be a very dangerous assignment of privilege as this would allow 

investigations managers to create any table they please and dispense rights on it to people, 

and these could be used as a platform for unauthorised sharing of private organisational 

data. 

 

The next idea was to pre-initialise these investigation team tables: to create them when the 

other tables (Staff, Incidents, etc.) were created and to grant INSERT and DELETE 

privileges on them to all investigators managers with the GRANT OPTION so as to enable 

them to endow the same privileges to the investigators assigned to the corresponding 

investigation.  Since each investigation team table’s name would match the identity number 

of the investigation, generating these numbers randomly would not permit this pre-

initialisation, so it was decided that the incident/investigation numbers would be 

determined using SQL’s AUTO INCREMENT operation. 

 

But because in South Africa, about two million crimes occur in a year, it was estimated that 

at least a million crimes would be reported to the police per year, and so a million 

investigation team tables would need to be created annually.  Just as the 695th table was 

created, realising that more than nine-hundred thousand tables still needed to be made, 

another plan had to be thought of. 
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The obvious solution then emerged: to have a team attribute in the Investigations table 

as briefly discussed in a previous sub-section. 

4.2.2.8. Hierarchy management 
Hierarchy management was implemented as a task that, again, a DBA could perform as 

these hierarchical shifts would involve revocation of old privileges and granting new ones 

suitable to the new job positions assigned. 

 

In CrAC however, and specifically in the instance of a staff member being demoted or 

entirely removed from the hierarchy, this reassigning of privileges also included re-

encrypting certain incident and investigation data that the user was no longer allowed 

access to, and in some cases, first re-assigning the data to new ownership (for example, if the 

user was heading a investigation and they were fired, data related to that investigation 

would need to be assigned to another investigator and re-encrypted accordingly).  To this 

effect, the procedure followed to find the incidents and investigations that need to be re-

encrypted when a staff member’s rank is being lowered is this: 

 all the incidents captured by and investigations headed by people who were 

subordinates to the staff member and whose rank is now higher than theirs are re-

encrypted; 

 if the staff member was a capturer, any incidents captured by them are re-assigned 

and re-encrypted accordingly, and likewise in the case of investigations where a staff 

member was an investigator. 

A similar process was followed in the case where a staff member was being removed from 

the hierarchy entirely.  Then they had to be removed from any investigation teams they 

were in and the related data re-encrypted accordingly, the data owned by their subordinates 

had to be re-encrypted too, and finally, any data owned by them was re-assigned and re-

encrypted. 

4.2.2.9. How the server fits in 
Below is a table listing the commands that users send to the server to accomplish the tasks 

described in this section so far (Table 2).  Alongside each command is a note on the actions 

that the server takes in response to the commands. 

Command Description of server’s response 

ADD TO KS 

This command is sent when a new user is being 

created on the system.  It serves as a signal for the 

server to generate the user’s set of symmetric and 

asymmetric keys, and these are communicated back to 

the user as described in Section 4.2.2.2.1. 

CLOSE KS 

This command notifies the server of the user’s intention 

to store the keystore.  This generally happens when the 

database administrator is done adding or removing staff 

members to or from the system.  

DEL FROM KS 

This command serves to tell the server to remove a 

staff member’s key entry from the keystore, and this is 

done when someone is being removed from the 

hierarchy. 
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EXIT 

True to its name, this command tells the 

ServerThread attending to a user’s requests to stop 

doing so.  The thread shuts down as specified by the 

program: it closes and removes the user’s 

ActiveP2PConnection and 

ActiveNormalConnection from the Server’s lists 

thereof, effectively logging them out of the system. 

INITIAL REQUEST FOR 

INVESTIGATION ENCRYPTION 

KEY 

This command is sent when an investigations manager 

is opening a new investigation and needs to encrypt 

the record under a key derived from the assigned 

investigator’s symmetric key.  A parameter sent with 

this command is the random tag to be stored with the 

investigation.  The server relays the request to this 

investigator, who then encrypts the tag using his 

symmetric key and sends it back to the investigations 

manager through the server. 

IS LEVEL ONE EMPLOYEE 

ONLINE? 

A user typically sends this command when they need to 

check whether an investigations manager is online to 

authorise some action.  For example, when a level is 

added to the hierarchy, investigations managers need to 

be contacted to find out how to re-assign data that 

belonged to people who, as a result of the change, lost 

their positions.  The server responds with a “yes” or 

“no”, and from there, the client either proceeds to make 

a further request or checks later for the availability of a 

Level 1 employee. 

LOGIN TO SYSTEM 

This command is sent as part of a user’s login process.  

Since users’ passwords are salted, this command tells 

the server to return the user’s password so that their 

identity can be verified correctly. 

P2P ADMIN CONNECTION 

This command is also sent as part of a user’s login 

process.  It informs the server that the connection made 

is one for receiving peer-to-peer requests.  

Consequently, the server stores its output and input 

streams to write to and read from this connection in the 

Server’s list of ActiveP2PConnections. 

REPLY TO MESSAGE 

This command serves to tell the server that the user is 

responding to a request, and is followed by the staff 

number of the intended recipient, the number of parts 

to the message being sent, and the message itself.  The 

ServerThread then writes this message to the 

recipient’s ActiveNormalConnection as they will 

be waiting on this response. 

REQUEST FOR INCIDENT 

ENCRYPTION KEY 

A user issues this command when they need the 

capturer of an incident to send them the key to decrypt 

the data.  The server sends this request to the capturer 
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on their ActiveP2PConnection. 

REQUEST FOR 

INVESTIGATION ENCRYPTION 

KEY  

Analogous to the above, this request is channelled to 

the relevant investigator. 

REQUEST FOR NEW DATA 

OWNER 

This command is sent when data is being assigned to 

new owners (like in the example where an investigator 

was fired and a new one had to be chosen to lead it). 

REQUEST FOR NEW 

ENCRYPTION KEY 

In the same strain, this command requests a new 

encryption key for an incident or investigation that 

needs to be re-encrypted. 

REQUEST PUBLIC KEY 

Lastly, this command is sent frequently by users in 

order to encrypt parts of their communication with 

other users and thereby verify their identities. 
 

Table 2: A list of the commands that the server handles with a brief description of how it responds.  

They are mostly related to the administration of the users’ keys – particularly the generation, 

assignment and secure communication thereof between users. 

 

4.3. Summary 
This chapter detailed how the design described in Chapter 3 was applied to implement the 

solution scheme, as well as its equivalent minus the cryptographic elements.  It explored the 

challenges encountered and how they were solved.  The major emphasis in both schemes 

was providing record-level access control to tables in the database, and where one achieved 

that using views, the cryptographic solution used encryption instead.  The next chapter 

outlines the experiments conducted to evaluate how well CrAC performed against its 

benchmark.  
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5 Experiment 

Design 
This chapter is a write-up of the different experiments that were conducted to assess CrAC’s 

performance.  The two measures that this project considered to evaluate the scheme’s 

performance were the speed of query execution and the latency introduced by CrAC – that 

is, measuring how long it takes to update the database after some change in the hierarchy 

has occurred (changes such as, adding a level to the hierarchy or removing a staff member 

from an investigation team).  These measures were considered in a number of scenarios, and 

the results and discussion thereof follow in the next chapter. 

 

In all the tests, the client was run on a Windows 7 32-bit machine with a clock speed of 2.27 

Gigahertz, while the server was run on a (find out what model the Honours lab machines are). 

 

5.1. Experiment 1: Speed of query execution 

5.1.1. Purpose 
The purpose of this experiment was to determine how quickly a user’s queries were 

executed in the system using CrAC (henceforth referred to as System C), and to measure the 

speed at which the same queries were executed in the system that only used SQL GRANT and 

REVOKE statements to deploy the access control model outlined in Table 1 (henceforth 

referred to as System S). 

 

5.1.2. Hypothesis 
It was hypothesised that query execution would be slower in System C than in System S. 

5.1.2.1. Rationale 
There were two reasons for thinking this would be the case: 

 System C and System S differ only in that the former uses encryption to provide 

record-level access to data, while the latter uses views.  The former’s approach 

resulted in many authorisation requests and encryption/decryption operations having 

to be done to retrieve what the latter could do by searching and returning records 

from a single view.  For example, if a user were to request permission to view all the 

incidents on the system, System C would request the necessary decryption keys from 

the capturer of each incident, while System S would simply return the entries in that 

person’s viewableIncidents view. 
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 For non-SELECT queries, System C and System S were identical except where System 

C introduced the additional overhead of encrypting certain attributes of the data 

before storing it. 

 

5.1.3. Experimental design 
Eight functions were tested on each system and Java’s System.currentTimeMillis() 

was used to record the time at which the method called to execute the query and the time at 

which the query was completed or the results were done being printed to the console, and 

by subtracting the former from the latter, an estimate of how long the query took to be 

executed in that instance was obtained. 

 

The eight functions tested were: 

 adding a new staff member to the system; 

 updating a staff member’s personal details; 

 viewing a full personal profile; 

 viewing all staff members’ limited profiles; 

 capturing a new incident; 

 viewing all the incidents; 

 creating a new investigation; 

 updating the details of an investigation. 

 

To test adding records to the database, StaffManager’s loadStaffFromFile, 

IncidentManager’s loadIncidentsFromFile and InvestigationManager’s 

loadInvestigationsFromFile methods allow records to be entered from a bar-

separated file instead of requiring human input.  They were added in batches of a hundred, 

and the time taken to insert each tuple recorded. 

 

To evaluate the query execution time for updates, updating personal details was chosen.  

The time taken to update an unencrypted field, an encrypted field, and then both in one 

transaction were recorded for later comparison. 

 

Lastly, to test how quickly tuples are returned upon being requested for by a user, viewing 

the staff’s limited profiles was timed and compared to viewing that required authorisations 

from the data owners in order to be able to read the data, for example, viewing incidents. 

 

5.2. Experiment 2: Latency 

5.2.1. Purpose 
Latency is the amount of time it takes for a system to respond to a request for data with the 

relevant data.  This experiment sought to observe the delay in updating the database tables 

as a consequence of various changes to the hierarchy of employees.  It aimed to acquire this 

measurement for both Systems C and S for comparison. 
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5.2.2. Hypothesis 
As with the previous experiment, it was hypothesised that System C would not fare as well 

as System S. 

5.2.2.1. Rationale 
The hypothesis was motivated by similar reasons to those listed for the previous 

experiment’s hypothesis: where System S would just revoke and grant certain permissions, 

the extensive use of encryption in CrAC would require that much more work be done in 

System C to update records and ensure that they are no longer accessible to employees 

whose access rights do not permit them to view data that they had access to before anymore 

(decryptions and re-encryptions under new keys). 

 

5.2.3. Experimental design 
Five functions were run to measure the latency of Systems C and S in different situations, 

namely: 

 demoting an employee; 

 adding a level to the hierarchy; 

 removing a level from the hierarchy; 

 deleting an employee from the system; 

 removing an employee from an investigation’s team. 

Java’s System.currentTimeMillis() was used in the same way as in Experiment 1 to 

give a measure of latency: the time when the function began execution to when it ended 

were recorded. 

 

5.3. Limitations 
The experiments conducted were enough only to measure certain aspects of the access 

control’s scheme’s performance, so their results served mostly to identify whether or not 

CrAC is a promising solution that should be explored and developed further.  To obtain a 

fuller picture of the scheme’s performance, one would need to consider more factors, such as 

how quickly the system executes queries when a realistic number of people are logged in to 

it and are sending queries concurrently. 

 

5.4. Summary 
This chapter documented the experiments conducted to assess CrAC’s performance.  The 

metrics used to measure this were query execution time and latency.  CrAC, as well as its 

SQL GRANT-and-REVOKE parallel, were tested by running a total of eighteen functions on 

systems that implemented each, and these tests were repeated several times to see if 

consistent (and so probably reliable) results were obtained.  The next chapter presents the 

results of the experiments, and further provides analysis of the results. 
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6 Results & 

Discussion 
In this chapter, the results of the experiments outlined in the previous chapter are presented. 

 

6.1. Experiment 1: Speed of query execution 
As is to be seen in the graph below, inserts into the database tables generally took twice as 

long with CrAC as they did with the views-based access control scheme, proving the 

hypothesis stated in the previous chapter.  This overhead is certainly at least partially 

introduced by the encryption that occurs on some fields of the data before it is stored on the 

server.  Specifically in the case of adding new staff members to the system, the generation of 

each user’s four-key set also contributes to this overhead. 

 

 
Figure 1. Graph comparing amount of time it took to enter a staff member's details into the database 

using CrAC and using the GRANT-and-REVOKE access control scheme. 

 

In a similar vein, CrAC performed poorly returning records from database tables, taking up 

to five times as long as the benchmark scheme.   This is depicted in the next graph.  Again, 

this comes about as a result of the scheme attempting to decrypt each profile before 

returning it. 
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Figure 2. A graph showing how long the system took to return the result to a query requesting to see 

all the staff's profiles. 

6.2. Experiment 2: Latency 
It took over fourteen minutes for CrAC to adjust users’ access restrictions after a level was 

added to the hierarchy.  This was probably because the re-assignment of permissions 

involved decrypting and re-encrypting some data under a key different to that which now 

disallowed persons may have used before. 

 

6.3. Summary 

This incomplete chapter served to present and analyse the results of the experiments 

outlined in Chapter 5.  Only a few of them were carried out, and the results of even fewer 

discussed, but they gave a clear enough indication that CrAC is not well-suited to the 

context of Cry-Help as it offers very slow execution of queries and affects the system’s 

latency badly when the hierarchical structure is modified somehow.  
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7 Conclusion & 

Future Work 
7.1. Summary of report 
This report aimed to document the design, development and evaluation of a cryptographic 

access control scheme called CrAC.  The scheme was designed in an attempt to provide a 

way of protecting an organisation’s data within the organisation.  Its primary objective was 

to facilitate access control, all the while maintaining the data’s privacy even from an attacker 

who could access it directly on the server.  The access control model that the solution had to 

be modelled for was a hierarchical one which further allowed sharing of data in a team of 

employees. 

 

The solution began by employing a notion of “data ownership”: every tuple entered in the 

database was assigned an owner, and this assigning process was intended to be 

straightforward.  If a capturer recorded an incident, that record was assigned to their 

ownership; likewise for an investigation headed by a certain investigator, and lastly, for staff 

members’ personal profiles.  Working from this assignment of data owners, each person 

having been assigned a personal secret key and each classified record having had a random 

(at most) eight-digit tag assigned to it upon entry into the database, the sensitive fields of a 

given classified record were encrypted under a key derived from the data owner’s secret key 

by enciphering the record’s tag with it. 

 

However, by taking this approach to design CrAC, many other features that would have to 

accompany it emerged.  These included sharing of encryption keys and re-encrypting data 

that a former employee once had access to but should no longer be able to view, even if he 

were to attempt reading it on the server itself. 

 

CrAC’s performance was then evaluated against an equivalent access control scheme that 

didn’t use any cryptographic elements.  Two aspects of performance were considered to 

gain an idea of how worthwhile a research direction CrAC was, namely: speed of query 

execution and latency.  In terms of these metrics, CrAC’s performance was very 

unsatisfactory, as it would take even up to five times as much time as the non-cryptographic 

solution to execute the same query on the same underlying data.  Its impact on the 

database’s latency was also far less than expected, with it taking over ten minutes to adjust 

users’ access permissions after a level was added to the hierarchy. 
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7.2. Conclusion 
The results of this project suggested that using independent keys as the backbone of a 

cryptographic access control scheme is not a good idea.  At the outset, they were a lucrative 

prospect as their counterpart – dependent keying – tends to require a change of keys all the 

way down a hierarchy from the place of impact (for instance, if someone is removed from 

the hierarchy, the keys of the people beneath them in rank would need to be re-computed 

and so data encrypted under the old keys would need to be re-encrypted under the newly-

assigned keys).  However, it soon appeared that as much as re-derivation of personal keys in 

CrAC was not frequent, re-encryption of data was, and since that is an expensive operation, 

this is a problem, and it is very likely common across all endeavours to protect persistent 

data cryptographically. 

 

This report concludes that as much as the solution scheme proposed meets the requirements 

stipulated in Table 1, its performance is too poor to be applied in a real police context. 

 

7.3. Future work 
One of the most inconvenient features of CrAC is how the requests for keys among peers are 

communicated.  A user has to manually keep checking to see whether they have received 

such a request, and in the case that they have not, the program hangs as it waits on a request 

to arrive.  A way to counteract this would be to develop a graphical user interface as 

opposed to the command-line interface that was used in this implementation of the access 

control scheme.  By moving to a GUI, popup dialogs could be taken advantage of and used 

to communicate these requests without interrupting the user’s work. 

 

Also, it would be interesting and worthwhile to see how this scheme compares with a 

dependent key scheme that achieves most, if not all, of what CrAC does.  If CrAC is found to 

perform worse than a dependent key scheme, then very likely independent keys shouldn’t 

be considered as a means of facilitating row-level access control in databases. 


